If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+37x+8=0
a = 2; b = 37; c = +8;
Δ = b2-4ac
Δ = 372-4·2·8
Δ = 1305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1305}=\sqrt{9*145}=\sqrt{9}*\sqrt{145}=3\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(37)-3\sqrt{145}}{2*2}=\frac{-37-3\sqrt{145}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(37)+3\sqrt{145}}{2*2}=\frac{-37+3\sqrt{145}}{4} $
| 5z+14=9z+6 | | 10^n=1000000 | | 14x-6x=0 | | 3(x+2)-7(2+5x)=53 | | x+0,7x=1,7x | | f(-10)=7(10)-5 | | -5+3x=-2x+0 | | 0,4x+4=3,9x-10 | | 0,4x+10^0=0 | | x/8=1/3 | | Y=230+x | | Y=0,08x | | z−3/4=7 | | 3 | | 3 | | 2-8y=42 | | 3 | | 6m=105-3-6+4 | | d^2+2d-3=0 | | 3x-198=11x+66 | | 30=4/5x-3/10x | | 20x+32=5x-13 | | 4x2+8x+3=0 | | 5m/4+2=17 | | 3x+14=26-2x | | 3(3x+1)-10=3x+17 | | 3x-12=2x+3x= | | 9x+7=7x-15 | | 3x^2+71/4x=2 | | 3a-8-a=8a-32 | | 9m-7=41 | | 5y=4-y |